回答:我們通常看到的卷積過濾器示意圖是這樣的:(圖片來源:cs231n)這其實是把卷積過濾器壓扁了,或者說拍平了。比如,上圖中粉色的卷積過濾器是3x3x3,也就是長3寬3深3,但是示意圖中卻畫成二維——這是省略了深度(depth)。實際上,卷積過濾器是有深度的,深度值和輸入圖像的深度相同。也正因為卷積過濾器的深度和輸入圖像的深度相同,因此,一般在示意圖中就不把深度畫出來了。如果把深度也畫出來,效果大概就...
回答:python入門的話,其實很簡單,作為一門膠水語言,其設計之處就是面向大眾,降低編程入門門檻,隨著大數據、人工智能、機器學習的興起,python的應用范圍越來越廣,前景也越來越好,下面我簡單介紹python的學習過程:1.搭建本地環境,這里推薦使用Anaconda,這個軟件集成了python解釋器和眾多第三方包,還自帶spyder,ipython notebook等開發環境(相對于python自帶...
回答:Python可以做什么?1、數據庫:Python在數據庫方面很優秀,可以和多種數據庫進行連接,進行數據處理,從商業型的數據庫到開放源碼的數據庫都提供支持。例如:Oracle, My SQL Server等等。有多種接口可以與數據庫進行連接,至少包括ODBC。有許多公司采用著Python+MySQL的架構。因此,掌握了Python使你可以充分利用面向對象的特點,在數據庫處理方面如虎添翼。2、多媒體:...
回答:1、web應用開發網站后端程序員:使用它單間網站,后臺服務比較容易維護。類似平臺如:Gmail、Youtube、知乎、豆瓣2、網絡爬蟲爬蟲是屬于運營的比較多的一個場景吧, 爬蟲獲取或處理大量信息:批量下載美劇、運行投資策略、爬合適房源、從各大網站爬取商品折扣信息,比較獲取最優選擇;對社交網絡上發言進行收集分類,生成情緒地圖,分析語言習慣;爬取網易云音樂某一類歌曲的所有評論,生成詞云;按條件篩選獲得...
回答:Python是一門電腦編程語言,而且是學習人工智能的第一語言,相對其他的流行語言python也比較簡單一些。主要學習的內容有web網站開發,游戲開發,爬蟲,數據分析,大數據,智能等各方面的內容,就業也是面向這些崗位,是以后的大趨勢,現在國家也在推廣這方面的學習了。python簡單易學、免費開源、高層語言、可移植性超強、可擴展性、面向對象、可嵌入型、豐富的庫、規范的代碼等。Python除了極少的涉及...
回答:框架就是一個基本架構,別人已經替你搭建好了基本結構,你只需要按自己需求,添加內容就行,不需要反復的造輪子,可以明顯提高開發效率,節約時間,python的框架很多,目前來說有web框架,爬蟲框架,機器學習框架等,下面我簡單介紹一下這3種基本框架,主要內容如下:1.web框架,這個就很多了,目前來說,比較流行的有3種,分別是Django,Tornado和Flask,下面簡單介紹一下這3個框架:Djan...
Histogram - 4 : Histogram Backprojection 理論 直方圖反向投影用于圖像分割或查找圖像中感興趣的對象,簡單來說,它會創建一個與輸入圖像大小相同(單個通道)的圖像,其中每個像素對應于屬于我們對象該像素的概率.輸出圖像將使...
卷積神經網絡作為深度學習的典型網絡,在圖像處理和計算機視覺等多個領域都取得了很好的效果。Paul-Louis Pr?ve在Medium上通過這篇文章快速地介紹了不同類型的卷積結構(Convolution)及優勢。為了簡單起見,本文僅探討二維卷...
讓我們簡要介紹一下不同類型的卷積以及它們的優點。為了簡單起見,我們只關注二維卷積。卷積首先我們需要定義一些卷積層的參數。卷積核大小(Kernel Size):卷積核定義了卷積的大小范圍,二維卷積核最常見的就是 3*3 的...
使用內核大小為3,步長為1和填充的2D卷積一般卷積首先,我們需要就定義卷積層的一些參數達成一致。卷積核大小(Kernel Size):卷積核定義了卷積的大小范圍,二維卷積核最常見的就是 3*3 的卷積核。步長(Stride):步長定義...
...原理的了解,更復雜的內容和實踐放在以后再進行總結。卷積神經網絡的基本原理 前面對全連接神經網絡和深度學習進行了簡要的介紹,這一節主要對卷積神經網絡的基本原理進行學習和總結。 所謂卷積,就是通過...
...隨機森林(Random Forest)方法來構建用于語義分割的分類器。卷積神經網絡(CNN)不僅能很好地實現圖像分類,而且在分割問題中也取得了很大的進展。最初,圖像塊分類是常用的深度學習方法,即利用每個像素周圍的圖像塊分別將各...
...我們也提供類似的小窗口,我們知道,當我們對圖片進行卷積的時候,我們可以對圖片進行很多操作,比如說圖片整體模糊,或者是邊緣的提取,卷積操作對于圖片來說可以很好的提取到特征,而且通過BP誤差的傳播,我們可以...
...我們也提供類似的小窗口,我們知道,當我們對圖片進行卷積的時候,我們可以對圖片進行很多操作,比如說圖片整體模糊,或者是邊緣的提取,卷積操作對于圖片來說可以很好的提取到特征,而且通過BP誤差的傳播,我們可以...
早期成果卷積神經網絡是各種深度神經網絡中應用最廣泛的一種,在機器視覺的很多問題上都取得了當前較好的效果,另外它在自然語言處理,計算機圖形學等領域也有成功的應用。第一個真正意義上的卷積神經網絡由LeCun在198...
ChatGPT和Sora等AI大模型應用,將AI大模型和算力需求的熱度不斷帶上新的臺階。哪里可以獲得...
大模型的訓練用4090是不合適的,但推理(inference/serving)用4090不能說合適,...
圖示為GPU性能排行榜,我們可以看到所有GPU的原始相關性能圖表。同時根據訓練、推理能力由高到低做了...